212 lines
3.5 KiB
Markdown
212 lines
3.5 KiB
Markdown
|
---
|
|||
|
theme: custom-theme
|
|||
|
---
|
|||
|
|
|||
|
# Perception & Color
|
|||
|
|
|||
|
## CAPP 30239
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## Today
|
|||
|
|
|||
|
- What matters most when creating a visualization?
|
|||
|
- How does human **perception** factor into visualization design?
|
|||
|
- Understanding **color**, and computational representations of it.
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## What is the most important question when creating a visualization?
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## What is the most important question when creating a visualization?
|
|||
|
|
|||
|
<ul>
|
|||
|
<li><s>Where will the data come from?</s>
|
|||
|
<li><s>What type of chart do I use?</s></li>
|
|||
|
<li>Who is the audience?</li>
|
|||
|
</ul>
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## Audience First
|
|||
|
|
|||
|
- Who are you presenting to?
|
|||
|
- How familiar are they with the data?
|
|||
|
- What is their numerical & visualization literacy?
|
|||
|
- Via what medium will they receive the information?
|
|||
|
- What are you trying to do? (Persuade, Inform, Inspire?)
|
|||
|
|
|||
|
*Only now can we start thinking about data and presentation.*
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## Perception
|
|||
|
|
|||
|
- **Selective** - We can only pay attention to so much.
|
|||
|
- **Patterns** - Our brains are pattern-matching machines, audience will benefit from intentional patterns & be distracted by unintentional ones.
|
|||
|
- **Limited working memory** - We hold a very limited set of information in our minds at once.
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## What do you see?
|
|||
|
|
|||
|
<div class="container">
|
|||
|
<div class="col">
|
|||
|
|
|||
|
![](example1a.png)
|
|||
|
|
|||
|
</div><div class="col">
|
|||
|
|
|||
|
```python
|
|||
|
alt.Chart(random_df).mark_point().encode(
|
|||
|
alt.X("a"),
|
|||
|
alt.Y("c"),
|
|||
|
alt.Color("b"),
|
|||
|
alt.Size("c"),
|
|||
|
alt.Shape("a:N"),
|
|||
|
alt.Fill("b"),
|
|||
|
alt.Opacity("b"),
|
|||
|
)
|
|||
|
```
|
|||
|
</div>
|
|||
|
</div>
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## What do you see?
|
|||
|
|
|||
|
<div class="container">
|
|||
|
<div class="col">
|
|||
|
|
|||
|
![](example1b.png)
|
|||
|
|
|||
|
```
|
|||
|
alt.Chart(random_df).mark_line().encode(
|
|||
|
x="a",
|
|||
|
y="c",
|
|||
|
)`
|
|||
|
```
|
|||
|
|
|||
|
</div>
|
|||
|
</div>
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## Effectiveness Revisited
|
|||
|
|
|||
|
![width:800px](effectiveness.png)
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
<div class="container">
|
|||
|
|
|||
|
<div class="col">
|
|||
|
|
|||
|
**Altair Channels**
|
|||
|
|
|||
|
- Position (`X, Y`)
|
|||
|
- Angle (`Angle`)
|
|||
|
- Area (`Radius`, `Size`)
|
|||
|
- Hue, Saturation (`Color`)
|
|||
|
- Texture (`Opacity`, `Fill`)
|
|||
|
- Shape (mark type, `Shape`)
|
|||
|
</div>
|
|||
|
|
|||
|
<div class="col">
|
|||
|
|
|||
|
**What about?**
|
|||
|
- Length
|
|||
|
- Slope
|
|||
|
- Volume
|
|||
|
- Density
|
|||
|
- Connection
|
|||
|
- Containment
|
|||
|
</div>
|
|||
|
</div>
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
**Derived Properties**
|
|||
|
|
|||
|
|
|||
|
- Length/Area - size of bars (`X`, `Y`)
|
|||
|
- Slope & Density - affected by scale
|
|||
|
- Connection - ex. layering of lines w/ points
|
|||
|
- Containment - achieved with layering
|
|||
|
|
|||
|
What about *volume*?
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## Stevens' Power Law
|
|||
|
|
|||
|
Stevens (1975): Human response to sensory stimulus is characterized by a power law with different exponents with different stimuli.
|
|||
|
|
|||
|
perception = (magnitude of sensation)<sup>a</sup>
|
|||
|
|
|||
|
Smaller <sup>a</sup> exponent: harder to perceive changes.
|
|||
|
|
|||
|
Stevens measured values of a by exposing people to varied stimulus and asking them to compare magnitudes.
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
|
|||
|
<div class="container"><div class="col">
|
|||
|
|
|||
|
![](stevens.png)
|
|||
|
|
|||
|
</div><div class="col">
|
|||
|
|
|||
|
|
|||
|
| Continuum | Exponent |
|
|||
|
|-|-|
|
|||
|
| Color Brightness| 0.33-0.5 |
|
|||
|
| Smell| 0.6 |
|
|||
|
| Loudness | 0.67 |
|
|||
|
| **Depth Perception** | 0.67 |
|
|||
|
| Area | 0.7 |
|
|||
|
| 2D Planar Position | 1.0 |
|
|||
|
| Warmth | 1.3-1.6 |
|
|||
|
| Color Saturation | 1.7 |
|
|||
|
| Electric Shock | 3.5 |
|
|||
|
|
|||
|
</div></div>
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## 3D Graphs
|
|||
|
|
|||
|
![](stunning-3d-chart.jpg)
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
![](datavizproject.png)
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
![](3d-scatter.png)
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## Instead of 3D Graphs
|
|||
|
|
|||
|
- Find other channels: hue & size are good candidates.
|
|||
|
- Combine different dimensions into side-by-side 2D graphs.
|
|||
|
|
|||
|
TODO: example of 2D decomposition of a graph
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## Color
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## Acknowledgements & References
|
|||
|
|
|||
|
Thanks to Alex Hale, Andrew McNutt, and Jessica Hullman for sharing their materials.
|
|||
|
|
|||
|
- https://www.math.csi.cuny.edu/~mvj/GC-DataViz-S23/lectures/L6.html
|
|||
|
- https://en.wikipedia.org/wiki/Stevens%27s_power_law
|