update stats filters
This commit is contained in:
parent
687679c6e4
commit
2e6723c15e
@ -1,13 +1,67 @@
|
|||||||
from saucebrush.filters import Filter
|
from saucebrush.filters import Filter
|
||||||
|
import itertools
|
||||||
|
import math
|
||||||
|
|
||||||
|
def _average(values):
|
||||||
|
""" Calculate the average of a list of values.
|
||||||
|
|
||||||
|
:param values: an iterable of ints or floats to average
|
||||||
|
"""
|
||||||
|
return sum(values) / float(len(values))
|
||||||
|
|
||||||
|
def _median(values):
|
||||||
|
""" Calculate the median of a list of values.
|
||||||
|
|
||||||
|
:param values: an iterable of ints or floats to calculate
|
||||||
|
"""
|
||||||
|
|
||||||
|
count = len(values)
|
||||||
|
|
||||||
|
# bail early before sorting if 0 or 1 values in list
|
||||||
|
if count == 0:
|
||||||
|
return None
|
||||||
|
elif count == 1:
|
||||||
|
return values[0]
|
||||||
|
|
||||||
|
values = sorted(values)
|
||||||
|
|
||||||
|
if count % 2 == 1:
|
||||||
|
# odd number of items, return middle value
|
||||||
|
return values[count / 2]
|
||||||
|
else:
|
||||||
|
# even number of items, return average of middle two items
|
||||||
|
mid = count / 2
|
||||||
|
return sum(values[mid - 1:mid + 1]) / 2.0
|
||||||
|
|
||||||
|
def _stddev(values, population=False):
|
||||||
|
""" Calculate the standard deviation and variance of a list of values.
|
||||||
|
|
||||||
|
:param values: an iterable of ints or floats to calculate
|
||||||
|
:param population: True if values represents entire population,
|
||||||
|
False if it is a sample of the population
|
||||||
|
"""
|
||||||
|
|
||||||
|
avg = _average(values)
|
||||||
|
count = len(values) if population else len(values) - 1
|
||||||
|
|
||||||
|
# square the difference between each value and the average
|
||||||
|
diffsq = ((i - avg) ** 2 for i in values)
|
||||||
|
|
||||||
|
# the average of the squared differences
|
||||||
|
variance = sum(diffsq) / float(count)
|
||||||
|
|
||||||
|
return (math.sqrt(variance), variance) # stddev is sqrt of variance
|
||||||
|
|
||||||
class StatsFilter(Filter):
|
class StatsFilter(Filter):
|
||||||
|
""" Base for all stats filters.
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, field, test=None):
|
def __init__(self, field, test=None):
|
||||||
self._field = field
|
self._field = field
|
||||||
self._test = test if test else lambda x: True
|
self._test = test
|
||||||
|
|
||||||
def process_record(self, record):
|
def process_record(self, record):
|
||||||
if self._test(record):
|
if self._test is None or self._test(record):
|
||||||
self.process_field(record[self._field])
|
self.process_field(record[self._field])
|
||||||
return record
|
return record
|
||||||
|
|
||||||
@ -20,6 +74,9 @@ class StatsFilter(Filter):
|
|||||||
self.__class__.__name__)
|
self.__class__.__name__)
|
||||||
|
|
||||||
class Sum(StatsFilter):
|
class Sum(StatsFilter):
|
||||||
|
""" Calculate the sum of the values in a field. Field must contain either
|
||||||
|
int or float values.
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, field, initial=0, **kwargs):
|
def __init__(self, field, initial=0, **kwargs):
|
||||||
super(Sum, self).__init__(field, **kwargs)
|
super(Sum, self).__init__(field, **kwargs)
|
||||||
@ -32,6 +89,9 @@ class Sum(StatsFilter):
|
|||||||
return self._value
|
return self._value
|
||||||
|
|
||||||
class Average(StatsFilter):
|
class Average(StatsFilter):
|
||||||
|
""" Calculate the average (mean) of the values in a field. Field must
|
||||||
|
contain either int or float values.
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, field, initial=0, **kwargs):
|
def __init__(self, field, initial=0, **kwargs):
|
||||||
super(Average, self).__init__(field, **kwargs)
|
super(Average, self).__init__(field, **kwargs)
|
||||||
@ -39,8 +99,79 @@ class Average(StatsFilter):
|
|||||||
self._count = 0
|
self._count = 0
|
||||||
|
|
||||||
def process_field(self, item):
|
def process_field(self, item):
|
||||||
self._value += item or 0
|
if item is not None:
|
||||||
|
self._value += item
|
||||||
self._count += 1
|
self._count += 1
|
||||||
|
|
||||||
def value(self):
|
def value(self):
|
||||||
return self._value / self._count
|
return self._value / float(self._count)
|
||||||
|
|
||||||
|
class Median(StatsFilter):
|
||||||
|
""" Calculate the median of the values in a field. Field must contain
|
||||||
|
either int or float values.
|
||||||
|
|
||||||
|
**This filter keeps a list of field values in memory.**
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, field, **kwargs):
|
||||||
|
super(Median, self).__init__(field, **kwargs)
|
||||||
|
self._values = []
|
||||||
|
|
||||||
|
def process_field(self, item):
|
||||||
|
if item is not None:
|
||||||
|
self._values.append(item)
|
||||||
|
|
||||||
|
def value(self):
|
||||||
|
return _median(self._values)
|
||||||
|
|
||||||
|
class MinMax(StatsFilter):
|
||||||
|
""" Find the minimum and maximum values in a field. Field must contain
|
||||||
|
either int or float values.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, field, **kwargs):
|
||||||
|
super(MinMax, self).__init__(field, **kwargs)
|
||||||
|
self._max = None
|
||||||
|
self._min = None
|
||||||
|
|
||||||
|
def process_field(self, item):
|
||||||
|
if item is not None:
|
||||||
|
if self._max is None or item > self._max:
|
||||||
|
self._max = item
|
||||||
|
if self._min is None or item < self._min:
|
||||||
|
self._min = item
|
||||||
|
|
||||||
|
def value(self):
|
||||||
|
return (self._min, self._max)
|
||||||
|
|
||||||
|
class StandardDeviation(StatsFilter):
|
||||||
|
""" Calculate the standard deviation of the values in a field. Calling
|
||||||
|
value() will return a standard deviation for the sample. Pass
|
||||||
|
population=True to value() for the standard deviation of the
|
||||||
|
population. Convenience methods are provided for average() and
|
||||||
|
median(). Field must contain either int or float values.
|
||||||
|
|
||||||
|
**This filter keeps a list of field values in memory.**
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, field, **kwargs):
|
||||||
|
super(StandardDeviation, self).__init__(field, **kwargs)
|
||||||
|
self._values = []
|
||||||
|
|
||||||
|
def process_field(self, item):
|
||||||
|
if item is not None:
|
||||||
|
self._values.append(item)
|
||||||
|
|
||||||
|
def average(self):
|
||||||
|
return _average(self._values)
|
||||||
|
|
||||||
|
def median(self):
|
||||||
|
return _median(self._values)
|
||||||
|
|
||||||
|
def value(self, population=False):
|
||||||
|
""" Return a tuple of (standard_deviation, variance).
|
||||||
|
|
||||||
|
:param population: True if values represents entire population,
|
||||||
|
False if values is a sample. Default: False
|
||||||
|
"""
|
||||||
|
return _stddev(self._values, population)
|
Loading…
Reference in New Issue
Block a user