update stats filters
This commit is contained in:
parent
687679c6e4
commit
2e6723c15e
@ -1,13 +1,67 @@
|
||||
from saucebrush.filters import Filter
|
||||
import itertools
|
||||
import math
|
||||
|
||||
def _average(values):
|
||||
""" Calculate the average of a list of values.
|
||||
|
||||
:param values: an iterable of ints or floats to average
|
||||
"""
|
||||
return sum(values) / float(len(values))
|
||||
|
||||
def _median(values):
|
||||
""" Calculate the median of a list of values.
|
||||
|
||||
:param values: an iterable of ints or floats to calculate
|
||||
"""
|
||||
|
||||
count = len(values)
|
||||
|
||||
# bail early before sorting if 0 or 1 values in list
|
||||
if count == 0:
|
||||
return None
|
||||
elif count == 1:
|
||||
return values[0]
|
||||
|
||||
values = sorted(values)
|
||||
|
||||
if count % 2 == 1:
|
||||
# odd number of items, return middle value
|
||||
return values[count / 2]
|
||||
else:
|
||||
# even number of items, return average of middle two items
|
||||
mid = count / 2
|
||||
return sum(values[mid - 1:mid + 1]) / 2.0
|
||||
|
||||
def _stddev(values, population=False):
|
||||
""" Calculate the standard deviation and variance of a list of values.
|
||||
|
||||
:param values: an iterable of ints or floats to calculate
|
||||
:param population: True if values represents entire population,
|
||||
False if it is a sample of the population
|
||||
"""
|
||||
|
||||
avg = _average(values)
|
||||
count = len(values) if population else len(values) - 1
|
||||
|
||||
# square the difference between each value and the average
|
||||
diffsq = ((i - avg) ** 2 for i in values)
|
||||
|
||||
# the average of the squared differences
|
||||
variance = sum(diffsq) / float(count)
|
||||
|
||||
return (math.sqrt(variance), variance) # stddev is sqrt of variance
|
||||
|
||||
class StatsFilter(Filter):
|
||||
""" Base for all stats filters.
|
||||
"""
|
||||
|
||||
def __init__(self, field, test=None):
|
||||
self._field = field
|
||||
self._test = test if test else lambda x: True
|
||||
self._test = test
|
||||
|
||||
def process_record(self, record):
|
||||
if self._test(record):
|
||||
if self._test is None or self._test(record):
|
||||
self.process_field(record[self._field])
|
||||
return record
|
||||
|
||||
@ -20,6 +74,9 @@ class StatsFilter(Filter):
|
||||
self.__class__.__name__)
|
||||
|
||||
class Sum(StatsFilter):
|
||||
""" Calculate the sum of the values in a field. Field must contain either
|
||||
int or float values.
|
||||
"""
|
||||
|
||||
def __init__(self, field, initial=0, **kwargs):
|
||||
super(Sum, self).__init__(field, **kwargs)
|
||||
@ -32,6 +89,9 @@ class Sum(StatsFilter):
|
||||
return self._value
|
||||
|
||||
class Average(StatsFilter):
|
||||
""" Calculate the average (mean) of the values in a field. Field must
|
||||
contain either int or float values.
|
||||
"""
|
||||
|
||||
def __init__(self, field, initial=0, **kwargs):
|
||||
super(Average, self).__init__(field, **kwargs)
|
||||
@ -39,8 +99,79 @@ class Average(StatsFilter):
|
||||
self._count = 0
|
||||
|
||||
def process_field(self, item):
|
||||
self._value += item or 0
|
||||
self._count += 1
|
||||
if item is not None:
|
||||
self._value += item
|
||||
self._count += 1
|
||||
|
||||
def value(self):
|
||||
return self._value / self._count
|
||||
return self._value / float(self._count)
|
||||
|
||||
class Median(StatsFilter):
|
||||
""" Calculate the median of the values in a field. Field must contain
|
||||
either int or float values.
|
||||
|
||||
**This filter keeps a list of field values in memory.**
|
||||
"""
|
||||
|
||||
def __init__(self, field, **kwargs):
|
||||
super(Median, self).__init__(field, **kwargs)
|
||||
self._values = []
|
||||
|
||||
def process_field(self, item):
|
||||
if item is not None:
|
||||
self._values.append(item)
|
||||
|
||||
def value(self):
|
||||
return _median(self._values)
|
||||
|
||||
class MinMax(StatsFilter):
|
||||
""" Find the minimum and maximum values in a field. Field must contain
|
||||
either int or float values.
|
||||
"""
|
||||
|
||||
def __init__(self, field, **kwargs):
|
||||
super(MinMax, self).__init__(field, **kwargs)
|
||||
self._max = None
|
||||
self._min = None
|
||||
|
||||
def process_field(self, item):
|
||||
if item is not None:
|
||||
if self._max is None or item > self._max:
|
||||
self._max = item
|
||||
if self._min is None or item < self._min:
|
||||
self._min = item
|
||||
|
||||
def value(self):
|
||||
return (self._min, self._max)
|
||||
|
||||
class StandardDeviation(StatsFilter):
|
||||
""" Calculate the standard deviation of the values in a field. Calling
|
||||
value() will return a standard deviation for the sample. Pass
|
||||
population=True to value() for the standard deviation of the
|
||||
population. Convenience methods are provided for average() and
|
||||
median(). Field must contain either int or float values.
|
||||
|
||||
**This filter keeps a list of field values in memory.**
|
||||
"""
|
||||
|
||||
def __init__(self, field, **kwargs):
|
||||
super(StandardDeviation, self).__init__(field, **kwargs)
|
||||
self._values = []
|
||||
|
||||
def process_field(self, item):
|
||||
if item is not None:
|
||||
self._values.append(item)
|
||||
|
||||
def average(self):
|
||||
return _average(self._values)
|
||||
|
||||
def median(self):
|
||||
return _median(self._values)
|
||||
|
||||
def value(self, population=False):
|
||||
""" Return a tuple of (standard_deviation, variance).
|
||||
|
||||
:param population: True if values represents entire population,
|
||||
False if values is a sample. Default: False
|
||||
"""
|
||||
return _stddev(self._values, population)
|
Loading…
Reference in New Issue
Block a user