from beakers.recipe import Recipe import pydantic class Word(pydantic.BaseModel): word: str class ClassifiedWord(pydantic.BaseModel): normalized_word: str is_fruit: bool class Sentence(pydantic.BaseModel): sentence: list[str] def word_classifier(item) -> ClassifiedWord: return ClassifiedWord( normalized_word=item.word.lower(), is_fruit=item.word.lower() in ( "apple", "banana", "fig", "grape", "lemon", "mango", "orange", "pear", "raspberry", ), ) recipe = Recipe("fruits-example") recipe.add_beaker("word", Word) recipe.add_beaker("classified_word", ClassifiedWord) recipe.add_beaker("sentence", Sentence) recipe.add_transform("word", "classified_word", word_classifier) recipe.add_conditional( "classified_word", lambda cw: cw.is_fruit, "fruits", ) recipe.add_transform( "fruits", "sentence", lambda x: Sentence(sentence=f"I love a fresh {x.normalized_word}".split()), ) recipe.add_seed( "word", [ Word(word="apple"), Word(word="bAnAnA"), Word(word="hammer"), Word(word="orange"), Word(word="EGG"), ], )